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Rotating properties of Bragg reflections and spatial lattice
solitons in rotating photonic lattices
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We demonstrate the rotating properties of Bragg reflections and spatial lattice solitons in rotating photonic
lattices by analyzing the linear and nonlinear propagations of light. It reveals that the Bragg reflection of
the light waves rotates synchronously with the lattices, leading to the rotation of the Bloch waves during
propagations. In the presence of nonlinearity, rotating lattice solitons from different transmission bands
can propagate in a relatively stable manner. However, reduced-symmetry solitons at point X2 cannot easily
rotate synchronously with the lattice, owing to Coriolis forces. Moreover, additional angular momenta are
added to the off-axis propagating solitons.
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In recent years, linear and nonlinear propagations of
light in photonic lattices have attracted growing inter-
est among researchers[1−15]. When a light wave prop-
agates in a linear photonic lattice, it is modulated pe-
riodically in accordance with the Floquet-Bloch theo-
rem. Due to the Bragg reflection of the periodic po-
tential, the continuous spatial transmission spectrum is
split into separate bands by the forbidden gaps at the
boundaries of the Brillouin zone[1−3]. On the basis of the
band-gap structures, intriguing phenomena have been
demonstrated in the photonic lattices, such as discrete
diffraction[1], anomalous diffraction and refraction[4−6],
as well as Bloch waves[6−9]. In the presence of nonlinear-
ity, discrete diffractions can be counteracted by the non-
linearity, before finally achieving stable localized states
as lattice solitons[10−15]. Specifically, photonic lattices
with a rotating property provide more interesting dynam-
ics than their stationary counterparts. In addition, var-
ious fascinating phenomena have been demonstrated in
rotating optical systems. For instance, in a twisted fiber,
propagating light can acquire new polarization dynam-
ics, and experience suppressed tunneling to an adjacent
fiber[16,17]. In addition, the nonlinear light propagations
in rotating waveguide arrays have been reported in a pho-
torefractive crystal, where in-band and multi-band wave
couplings and lattice solitons are experimentally observed
under noninertial (centripetal and Coriolis) forces[18]. In
a cold atom system, the rotating square potentials were
introduced in Bose-Einstein condensates that supported
stable fundamental and vortex solitons[19,20]. Resembling
the case in curved lattices, the couplings of the underly-
ing Bloch modes were modified in a rotating photonic
lattice[21]. In this letter, the Bragg reflection in the ro-
tating lattice is also changed rather than in the curved
lattice. The rotating properties of the Bragg reflections
and lattice solitons are demonstrated by analyzing the
linear and nonlinear propagations of light in rotating pho-
tonic lattices. The Bloch waves and gap solitons with the
rotation property are stimulated under tricky initial con-
ditions. This reveals that the rotation of the Bragg re-

flection benefits the stability of the lattice solitons, which
may also be affected by Coriolis forces.

The nonlinear propagation of a probe beam in a bi-
ased photorefractive crystal with rotating photonic lat-
tices could be described by the dimensionless model ini-
tially deduced by Zozulya et al.[22]. When the character-
istic spatial scale is larger than the photorefractive De-
bye length, and assuming the diffusion effect can be ne-
glected, the steady-state propagations of the probe beam
in the rotating photonic lattices are governed by
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where B is the complex amplitude of the probe beam,
∇2
⊥ = ∂xx + ∂yy, and E0 is the external bias field. Here,

the periodic potential of the rotating lattice Vl is de-
scribed by





Vl = V0 cos2(πx1/d) cos2(πy1/d)

x1 = x cos(δθz) + y sin(δθz)

y1 = −x sin(δθz) + y cos(δθz)

, (2)

where V0 is the peak value of the lattice potential, d is
the period, and δθ denotes the rotation velocity of the
lattice along z-axis. A geometric schematic of the rotat-
ing photonic lattices is shown in Fig. 1(a), which shows
that the lattice sites rotate around the z-axis, while the
central site remains stationary.

Calculating the Brillouin zone spectra (BZSs) is es-
sential in analyzing the Bragg reflections of the rotat-
ing photonic lattices. In the photonic lattice, the light
components with spatial frequency near the Brillouim
zone (BZ) boundaries are selectively reflected according
to the Bragg’s law; as a result, the corresponding re-
gions in momentum space receive weak illumination and
present dark lines[2,3]. These dark lines represent the
BZ boundaries and the intensities of the corresponding
Bragg reflections.
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Here, we used the simulation parameters δθ=π/600,
d =5, and V0=0.5, and employed the method proposed in
Ref. [3] to calculate the BZSs of the rotating lattices
depicted in Eq. (2). Figure 1(b) is the BZSs of the
stationary lattice, and Figs. 1(c) and (d) are the BZSs
of the rotating lattice depicted in Eq. (2) at z=100 and
150, respectively. Unlike the stationary lattice, the BZSs
did not remain stationary but revolved synchronously
with the lattice, i.e., the BZSs and lattice revolved at
the same angle of 30◦ (45◦) at z=100 (150) (Figs. 1(c)
and (d)). Considering that the propagation of light with
the spectrum close to the BZ boundaries of the photonic
lattice acted upon by the Bragg reflection, the “force”
generated by the rotating Bragg reflection may drive
light to turn around along with the lattice.

Meanwhile, we studied the propagation of the Bloch
modes of high-symmetry points at the BZ boundaries,
where they suffered from strong Bragg reflections. To
excite the pure Bloch modes, the profiles of the in-
put beams were modulated by the phase structures
of corresponding Bloch waves (see the left panels of
Figs. 2(b)−(e)), as previously reported in Ref. [7].
For the excitation of points X1, M1, X2, and M2, the
input beams were constructed with the expressions of
exp[−(x/12)2−(y/12)2]cos(πx/5), exp[−(x/12)2−(y/12)2]
cos(πx/5)cos(πy/5), exp[−(x/12)2 −(y/12)2]sin(πx/5),
and exp[−(x/12)2−(y/12)2] sin(πx + y)/5), respectively
(insets of Figs. 2(b)−(e)). Taking the input beams con-
structed above as the initial conditions, the light propa-
gations in the rotating photonic lattices were simulated
by solving the linear version (E0 =0) of Eq. (1) with
split-step beam propagation method. And the output
profiles at z =100 (where the photonic lattice and corre-
sponding BZ turned 30◦) are shown in the right panels of
Figs. 2(b)−(e), where the right insets depict the output
spatial spectra. Most evolution results (except that of
point M2) accord with the profiles of the corresponding
Bloch modes with a rotating angle of about 30◦. The
conclusion can be clearly seen from the output spectra in
the momentum space. For instance, the spatial spectrum
of Fig. 2(b), which is derived from the Bloch modes of
point X1, is distributed into two bright spots at the two
X-points of the rotated BZ. More importantly, due to
the Coriolis forces that resist the rotation of the lattice,
the two bright spots tend to shift to the opposite direc-
tion to the rotation of the lattice. It should be specially
noted that the excitation of the Bloch modes at point
M2 is hardly distinguishable, and additional modes are

Fig. 1. (a) Geometric schematic of the rotating lattice; (b)
BZS of stationary lattice; (c) and (d) BZSs of rotating lattice
at z=100 and 150, respectively.

Fig. 2. (a) Band-gap structure of the photonic lattice; (b)−(e)
Bloch waves (left) and their propagations in the rotating lat-
tice (right) of points X1, M1, X2, and M2, respectively. Left
insets: input profiles; right insets: spectra of the output
fields.

Fig. 3. Discrete diffractions in rotating photonic lattices with
incident sites at (a) the central site (0,0) and (b) (20,15); from
left to right, they correspond to z=0, 50, and 100, respectively.
The crosses denote the central site of the lattices.

excited (Fig. 2(e)). The Bloch wave at point M2 changes
its shape easily in the non-uniform lattices or even in the
anisotropic lattices. As a result, under the actions of
the changeable Bragg reflections and the Coriolis forces
in the rotating lattice, the M2-point Bloch wave hardly
maintained its shape and evolved into mixed modes, as
shown in Fig. 2(e). However, the rotating Bragg re-
flections are still revealed to be supported by the Bloch
waves on the whole.

Next, we analyzed the propagations of lattice solitons,
which were derived from the balance between discrete
diffraction and nonlinearity. First, the linear scheme was
explored to study the properties of discrete diffractions
in the rotating lattice. To simulate the propagation, a
Gaussian probe beam B0 =0.5exp[−(x/2.5)2−(y/2.5)2]
was launched into positions (0,0) and (20,15) of the rotat-
ing lattice (with lattice space d=5, and (0,0) denoteing
the central site), respectively. The results are shown in
Fig. 3, illustrating, from left to right, the input beam
and output profiles at z=0, 50, and 100, respectively.
When launched at the central waveguide (on-axis, see
Fig. 3(a)), the discrete diffraction patterns turn around
along with the lattice and maintain four-fold symmetry
during propagations. When launched at the waveguide
away from the center (off-axis, see Fig. 3(b)), the posi-
tion of the peak intensity remained almost still, owing to
Coriolis forces.

To observe the propagation of the discrete solitons, a
self-focusing nonlinearity (E0=1) was added to the ro-
tating lattice. Figure 4 represents the nonlinear prop-
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Fig. 4. Discrete solitons in rotating photonic lattices with the
incident sites at (a) (0,0) and (b) (20,15); from left to right,
they correspond to z=0, 50, and 100, respectively. The insets
are the corresponding spatial spectra.

Fig. 5. Gap solitons bifurcating from point M1 in rotating
photonic lattices with the incident sites at (a) (0,0) and (b)
(20,15); from left to right, they correspond to z=0, 50, and
100, respectively. The insets are the corresponding spatial
spectra.

agations of the probe beam depicted in Fig. 3, which
have been launched at positions (0,0) and (20,15) as
shown in Figs. 4(a) and (b), respectively. The frames,
from left to right, correspond to the respective probe
beams and output profiles at z=0, 50, and 100. From
the propagation results, the discrete solitons are shown
to stably exist in the rotating lattices, no matter whether
they are on-axis or off-axis. The soliton stability of the
on-axis propagations is due to the lack of external force.
Interestingly, the stability of the off-axis discrete soli-
ton has not been ruined, although there is a Coriolis
force. Moreover, in the virtue of rotating lattice, an
additional angular momentum is added to the discrete
soliton, which can be seen from the deviated spots of the
spectrum patterns in the insets of Fig. 4(b).

The spreading of the probe beam is enhanced by the
presence of self-defocusing nonlinearity. The spatial spec-
trum of the probe beam is reshaped[13], reaches the
boundary of the BZ, and then suffers from the Bragg
reflection. Under this condition, gap soliton bifurcating
from point M1 may be formed. To support large gaps,
the lattice potential was increased to V0 =4. Moreover,
self-defocusing nonlinearity was introduced by changing
the external bias field to E0 =−4. The simulation re-
sults shown in Fig. 5 reveal that, after reshaping the
nonlinear spectrum, the probe beams gradually evolve
into gap solitons that rotate together with the lattice.

Compared with the on-axis propagation, the off-axis
gap soliton obtains an additional angular momentum by

the agency of the rotating lattice. The spatial spectrum
is not distributed at the four corners of the BZ exactly,
but wholly shifts along the direction of instantaneous
linear velocity of the soliton (insets of Fig. 5(b)). Fur-
thermore, the gap solitons−whether launched on-axis or
off-axis−can steadily propagate for a rather long dis-
tance because of the rotating Bragg reflection.

Finally, the gap solitons bifurcating from point X2

were also investigated. These solitons, called reduced-
symmetry solitons, are based on the combined effects
of the total internal reflection and Bragg reflection,
and represent highly anisotropic symmetry[12]. In
the rotating lattice (V0=2) with a self-focusing non-
linearity (E0=1), the input beam was modulated as
B0=0.8exp[−(x/10)2−(y/5)2]sin(πx/5) to match the
profile of the Bloch wave at point X2. Figures 6(a) and
(b) depict on-axis and off-axis (launched at (−10,10))
evolutions of the reduced symmetry solitons, respec-
tively. When propagating on-axis, the soliton basically
keeps a rotating profile for a long distance. However, due
to the anisotropic profile, the soliton suffers the influence
of Coriolis forces and presents delayed rotation (see the
right side of Fig. 6(a)). When propagating off-axis, the
soliton exhibits enhanced mobility. This phenomenon
has been previously presented in Ref. [12]. Furthermore,
by the action of Coriolis forces, the soliton tends to rotate
counterclockwise, in contrast with the lattice. However,
due to the reduced symmetry, the soliton moves along
the direction where it suffers Bragg reflection (see the
arrowhead in Fig. 6(b)), and is trapped in the orthog-
onal direction. Worth noting is the fact that this type
of soliton is unsteady and easily collapses when traveling
for a long distance. To restrain the anisotropic sym-
metry of this soliton, the multi-vortex mode generated
by the superposition of two degenerate modes at point
X2 was launched on-axis in the rotating lattice[23]. The
evolution is shown in Fig. 6(c), from which a more stable
self-trapping state is formed.

Fig. 6. Propagation of reduced-symmetry solitons (a) on-axis
and (b) off-axis (launched at (−10,10)), and (c) multi-vortex
solitons bifurcating from point X2 in rotating photonic lat-
tices. From left to right, they correspond to z=0, 50, and
100, respectively. The insets are the corresponding spatial
spectra.
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In conclusion, the rotating properties of the Bragg re-
flection and spatial lattice solitons are demonstrated in
the rotating photonic lattices by numerically analyzing
the linear and nonlinear light propagations. The Bragg
reflections of the rotating lattice, visualized by numerical
BZ spectroscopy, are found to rotate following the po-
tential of lattices. The Bloch modes at high symmetric
points are simulated by matching the probe beams with
the corresponding Bloch waves. Under the influences
of the rotating Bragg reflection, the Bloch waves turn
around along with the lattices during propagation. In
the nonlinear case, the multi-band spatial lattice soli-
tons propagating on-axis and off-axis are excited in the
rotating lattices. In the case of off-axis propagation,
additional angular momenta are added to the solitons.
Interestingly, reduced-symmetry solitons at point X2 do
not easily rotate synchronously with the lattice because
of the anisotropic symmetry, which represents enhanced
mobility in the modulated direction. However, a stable
state can be excited by the multi-vortex modes super-
posed from the two degenerate modes at point X2.

This work was supported by the Northwestern Poly-
technical University Foundation for Fundamental Re-
search (No. JC200950) and the Doctorate Foundation of
Northwestern Polytechnical University (No. CX200914).

References

1. D. N. Christodoulides, F. Lederer, and Y. Silberberg,
Nature 424, 817 (2003).

2. K. Zhou, Z. Guo, and S. Liu, Chin. Opt. Lett. 8, 791
(2010).

3. S. Liu, P. Zhang, X. Gan, F. Xiao, and J. Zhao, Appl.
Phys. B 99, 727 (2010).

4. T. Pertsch, T. Zentgraf, U. Peschel, A. Bräer, and F.
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